博客
关于我
KNN —— 基本介绍与简要实现
阅读量:347 次
发布时间:2019-03-04

本文共 522 字,大约阅读时间需要 1 分钟。

KNN算法

介绍

KNN(K-Nearest Neighbors)是一种经典的分类算法,其基本思想是通过找到某个样本的K个最近邻来预测其类别。这种方法在数据局部进行分类,属于局部方法。

K值的选择至关重要,通常K取奇数以避免平票。例如,在二分类问题中,K常设为1、3、5等。算法步骤包括计算测试点与所有训练点的距离、排序后选择前K个最近点,并根据这些点的类别分布归类测试点。

实现步骤

  • 计算距离:对于每个测试点,计算其到所有训练点的欧氏距离。
  • 排序:对所有距离按从小到大排序,找出最近的K个点。
  • 统计类别:统计前K个最近点中各类别的数量,选择数量最多的类别归类测试点。
  • 案例分析

    以鸢尾花数据集为例,数据包含四个特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度。类别分为山鸢尾花(0)、变色鸢尾花(1)、维吉尼亚鸢尾花(2)。此处采用K=5进行分类。

    通过上述算法,实现分类任务。代码使用sklearn中的鸢尾花数据集,切分训练集和测试集,应用KNN算法进行预测。最终结果表现在分类报告中,展示准确率、召回率及F1值等评估指标。

    该方法具有高效性和简单性,但适用场景主要限于小规模数据集。对于大规模数据集,可能需要降维或使用其他优化技术以提高性能。

    转载地址:http://hehe.baihongyu.com/

    你可能感兴趣的文章
    Offline Installation the .NET Framework 3.5 on Windows 8
    查看>>
    OGC服务标准(地图资料篇.3)
    查看>>
    OGG初始化之使用数据库实用程序加载数据
    查看>>
    ogg参数解析
    查看>>
    ognl详解
    查看>>
    Ogre 插件系统
    查看>>
    Oil Deposits
    查看>>
    oj2894(贝尔曼福特模板)
    查看>>
    OJ4TH|Let's play a game
    查看>>
    OJ中处理超大数据的方法
    查看>>
    OJ中常见的一种presentation error解决方法
    查看>>
    OK335xS UART device registe hacking
    查看>>
    ok6410内存初始化
    查看>>
    OkDeepLink 使用教程
    查看>>
    OKHTTP
    查看>>
    Okhttp3中设置超时的方法
    查看>>
    Okhttp3添加拦截器后,报错,java.io.IOException: unexpected end of stream on okhttp3.Address
    查看>>
    okhttp3缓存
    查看>>
    Okhttp拦截器
    查看>>
    OkHttp源码解析(构建者模式、责任链模式、主线流程)
    查看>>